Introduction to Network Security

Chapter 7

Transport Layer Protocols

Dr. Doug Jacobson - Introduction to Network Security - 2009

Topics

- TCP Layer
 - Responsible for reliable end-to-end transfer of application data.
- TCP vulnerabilities
- UDP
- UDP vulnerabilities
- DNS

TCP Services

Multiplexing:

 A process within a host using TCP service is identified with a port. A port, when concatenated with an internet address, forms a Socket, which is unique throughout the internet. Service provided by TCP is provided by means of a logical connection between a pair of sockets.

> Dr. Doug Jacobson - Introduction to Network Security - 2009

Multiplexing service

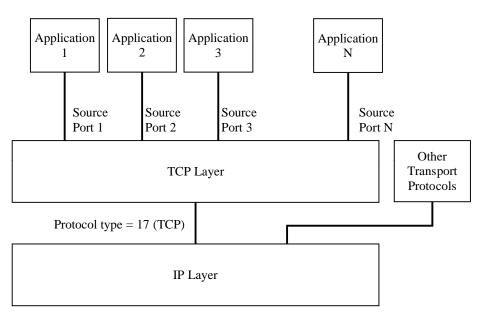


Figure 7.1 TCP Multiplexing

Dr. Doug Jacobson - Introduction to Network Security - 2009

TCP port numbers

5	RJE	68	Bootstrap Protocol Client
•	-		Trivial FTP
7	echo	69	
9	Discard	75	any private dialout service
11	Active Users	77	any Private RJE service
13	daytime	79	FINGER
15	Who is up	101	NIC host name server
17	Quote of the day	102	ISO-TSAP
19	Character Generator	103	X.400
20	FTP (default data)	104	X.400-SND
21	FTP (control)	105	CSnet Name server
23	TELNET	109	Post Office Protocol Ver 2
25	SMTP	113	Authentication Service
37	Time	115	Simple FTP
42	Host name service	119	NNTP
53	Domain name server	123	NTP
67	BOOTP	161	SNMP agent
		162	SNMP management station
		Dr. Doug Ja	acobson - Introduction to
		Netwo	ork Security - 2009

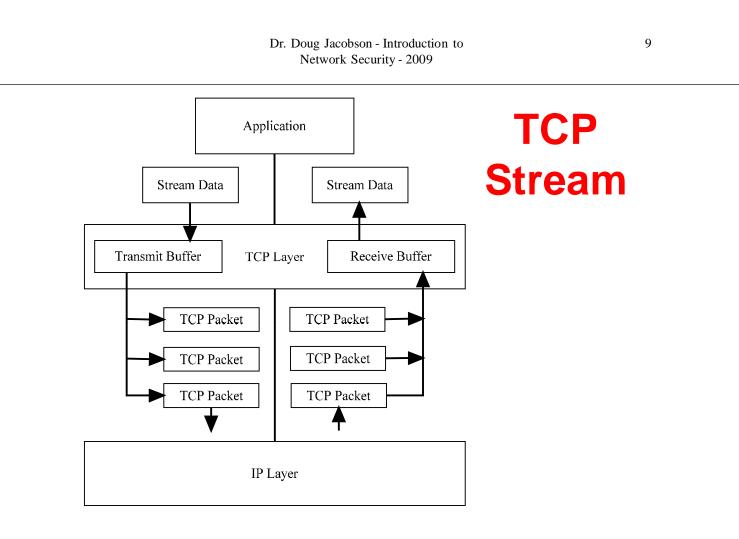
TCP Connection Management

Consists of three services:

- Connection Establishment: Allow two TCP users to setup a logical connection between their respective sockets. A connection may be setup if:
- No connection between the two sockets currently exists. From a given socket, it is possible to simultaneously maintain more than one connection, but only one connection to any specific remote socket at a time is permitted.
 - Internal TCP resources are sufficient.
 - Both users have agreed to the connection.

TCP Connection Management

- Connection Maintenance service provides for the exchange of data between the two sockets and supports the data transport (described in the next slide).
- Connection Termination may be either abrupt or graceful. With abrupt termination, data in transit may be lost. A graceful termination prevents either side from shutting down until all data have been received.


Dr. Doug Jacobson - Introduction to Network Security - 2009

TCP Data Transport

- Full Duplex: Both users may transmit at once.
- Timely: The user may request timely delivery of data by associating a timeout with data submitted for transmission. If TCP detects a timeout the connection is abruptly terminated.
- Ordered: TCP is stream oriented. TCP guaranteed that the stream of data presented by one user to TCP will be delivered in the same order to the destination user.
- Labeled: TCP establishes a connection only if the security designation provided by both users match.
- Flow Control: Used to prevent internal TCP congestion
- Error Control: TCP uses a simple checksum.

TCP

• Stream Orientation - When two application processes transfer large volumes of data, we can think of the as a stream of bits divided into 8-bit bytes The stream service on the destination passes the same sequence of octets to the receiver that the sender passed to the source machine. Data are not treated as packets but as a stream of data that is passed to the transport entity. The transport entity will divide the data into packets for transmission to the destination. The destination transport entity will pass the data to the user as a stream.

Dr. Doug Jacobson - Introduction to Network Security - 2009

TCP Special Capabilities

TCP supports two special capabilities associated with the transfer of data

- Data Stream Push: Used to force the delivery of all data waiting to be sent.
- Urgent Data Signaling: Provides a means of informing the destination TCP user that urgent data is in the incoming data stream.

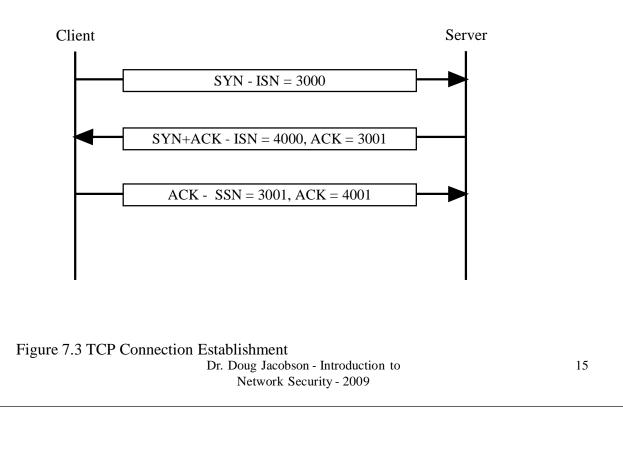
Dr. Doug Jacobson - Introduction to Network Security - 2009

TCP Error Reporting

• TCP will report service failure stemming from catastrophic conditions

TCP Services

- Unspecified Passive open
- Fully Specified Passive Open
- Active Open
- Active Open with data
- Send
- Deliver
- Allocate
- Close
- Abort
- Terminate
- Error

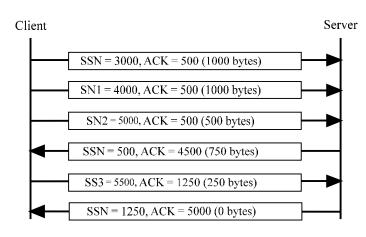

Dr. Doug Jacobson - Introduction to Network Security - 2009

TCP Protocol

Connection Establishment:

 TCP uses a three handshake for connection establishment. We will see TCP defines only one packet format that contains flags to indicate what type of packet it is. The connection packets have the SYN flag set.

TCP 3-way Handshake



TCP Protocol

Data Transfer:

 Sequence numbers are used for data transfer. The sequence numbers represent the number of bytes not the number of packets. Flow control is handled by using a credit allocation scheme as describe earlier.

TCP Data Transfer

3	3000 4	000	5000	5500
	Packet 1	Packet 2	Packet 3	Packet 4
	1000 bytes	1000 bytes	500 bytes	250 bytes
-	Acknowledged	Pendi	ing Acknowledge	ment

Figure 7.4 TCP Data Transfer

Dr. Doug Jacobson - Introduction to Network Security - 2009

17

TCP Connection Termination

Connection Termination:

 The connection is terminated by sending a packet with the FIN flag set. This packet contains the number of the last packet sent.

TCP Connection termination

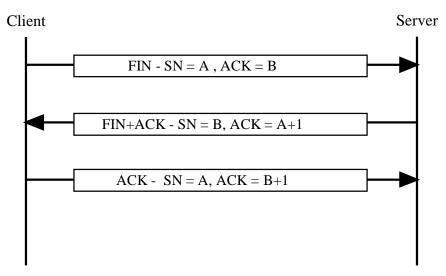


Figure 7.5 TCP Graceful Termination

Dr. Doug Jacobson - Introduction to Network Security - 2009

TCP Header Format

	Sourc	e Port	Destination Port				
Sequence Number							
	Acknowledgement Number						
Hdr-Len	Reserved	Flags	Window Size				
Checksum Urgent Pointer							
Options							

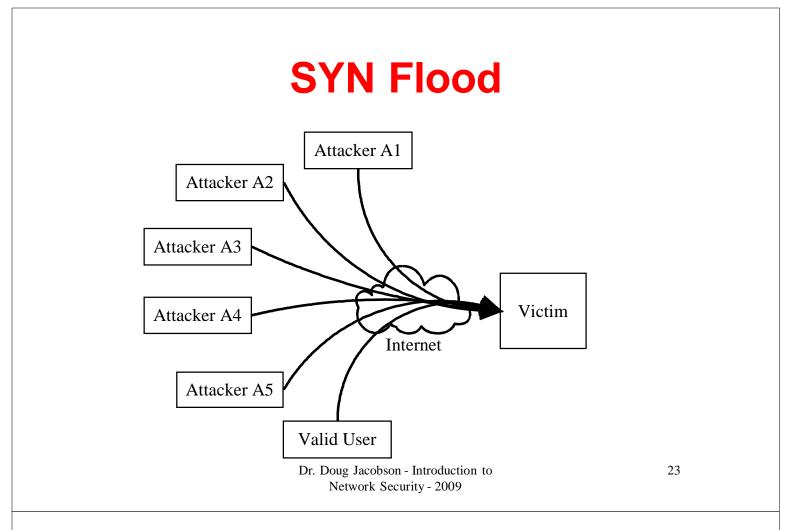
Flags

URG	ACK	PSH	RST	SYN	FIN
-----	-----	-----	-----	-----	-----

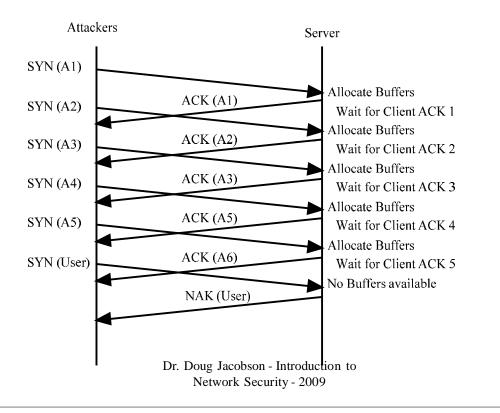
Flag	Function					
URG	Packet contains urgent data					
ACK	Acknowledgment number is valid					
PSH	Data should be pushed to the application					
RST	Reset Packet					
SYN	Synchronize packet					
FIN	FIN Finish packet					

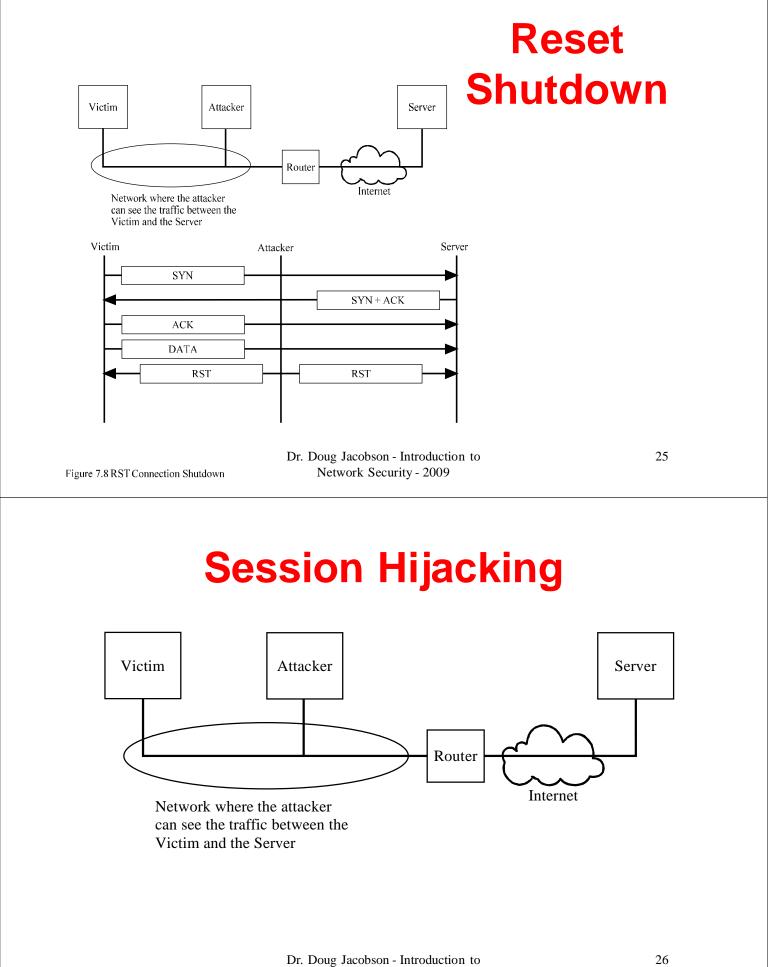
Figure 7.6 TCP Header Format

Dr. Doug Jacobson - Introduction to Network Security - 2009

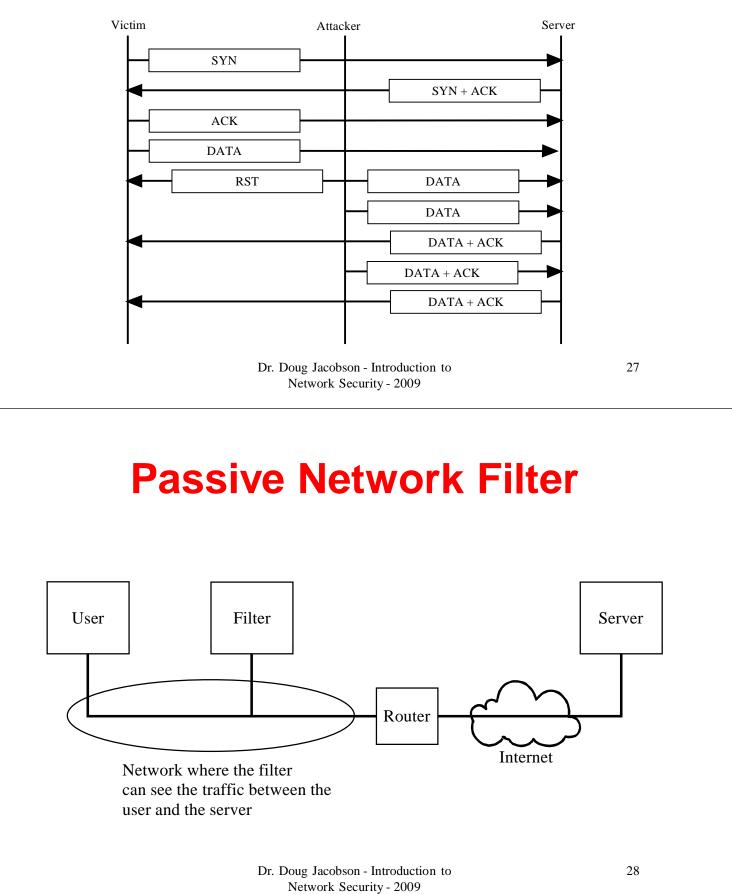

Header Based

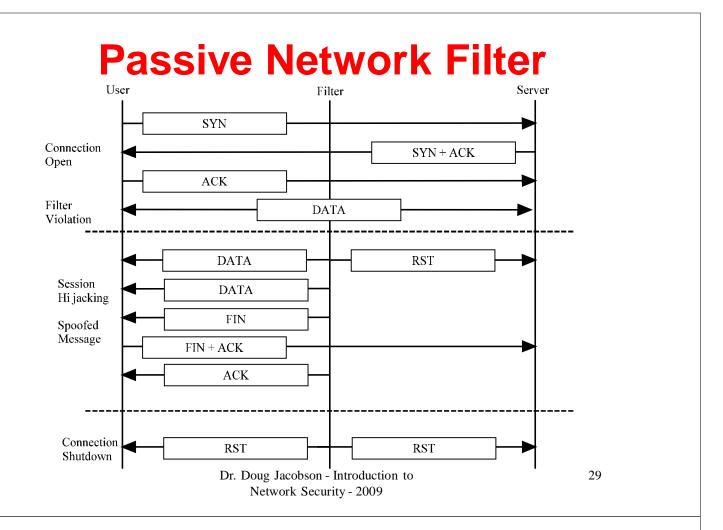
- There have been several attacks using invalid flag combinations.
- Most have been fixed, however this is now used to help determine the type of operating system
 - Probing attacks
 - Invalid header responses
 - Initial values
 - sequence numbers
 - Window size


Dr. Doug Jacobson - Introduction to Network Security - 2009


Protocol Based

- Syn flood
- Reset Packets
- Session Hijacking


SYN Flood



Network Security - 2009

Session Hijacking

Mitigation

- Encryption can fix Session hijacking
- Reset is harder
- Syn flood is hard

Authentication Based

- No authentication in TCP
- Ports might be considered an authentication of the application

Dr. Doug Jacobson - Introduction to Network Security - 2009

Traffic Based

- Flooding (using all of the TCP resources)
- QOS
- Sniffing

User Datagram Protocol

- Designed to allow connectionless protocols
- Typical applications will send one packet and wait for a single response.

Source Port	Destination Port				
UDP Total Length	Checksum				

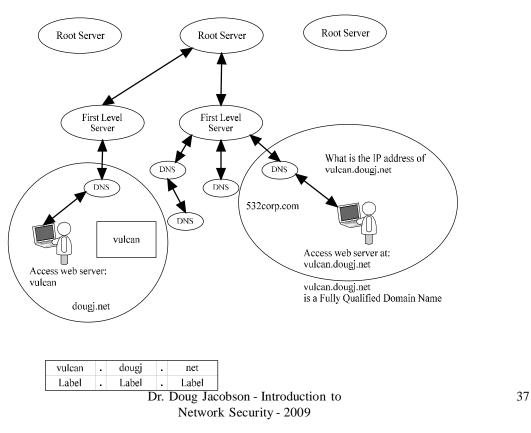
Dr. Doug Jacobson - Introduction to Network Security - 2009

UDP Attacks

- Header & Protocol: None since there is no protocol and very simple header
- Authentication: same as TCP
- Traffic: typically not a problem. Sniffing is a potential problem, but most UDP protocols don't try to hide data. Flooding is hard with UDP.
- Mitigation: Most organizations block all UDP except port 53 (DNS)

Dr. Doug Jacobson - Introduction to Network Security - 2009

Domain Name Service


- Designed to give organizations a way of controlling their name space
- Distributed control over computer name to IP address mapping
- DNS normally uses UDP and port 53
 - If the answer is bigger than 512 bytes, can use TCP

Dr. Doug Jacobson - Introduction to Network Security - 2009

Domain Names

- Tree Structure max 128 levels, root = level 0
- Domain name: <u>www.iastate.edu</u>
 - Each name between the dots is called a label
 - Label <= 63 characters
- Fully qualified domain name: <u>www.iastate.edu</u>.
 - Adds "." at the end
- Partially qualified domain name
 - Supported by the client
 - The leftmost part of a domain name
 - E.g., www. Gets filled in to www.iastate.edu by the client

DNS Name Space

Server Types

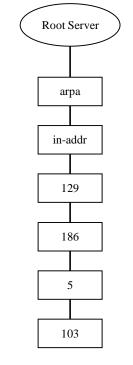
- Server Types
 - Root Server
 - Primary Server
 - Secondary Server
- Can only push data from Primary to Secondary (not Secondary to Primary)

DNS Queries

- DNS Queries
 - Name to Address
 - Address to Name
- Resolver: Client code that queries DNS using two lookup methods:
 - Recursive
 - Iterative

Dr. Doug Jacobson - Introduction to Network Security - 2009

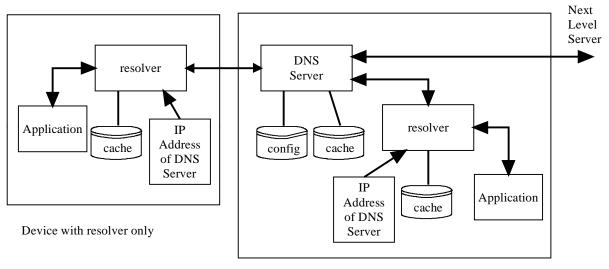
Reverse Query


- IP to Name
- 129.186.5.100 what is its name
- Query is made to:
 - 100.5.186.129.in-addr.arpa.
- This way it can be parsed just like a name

- 129 then 186 then 5 then 100

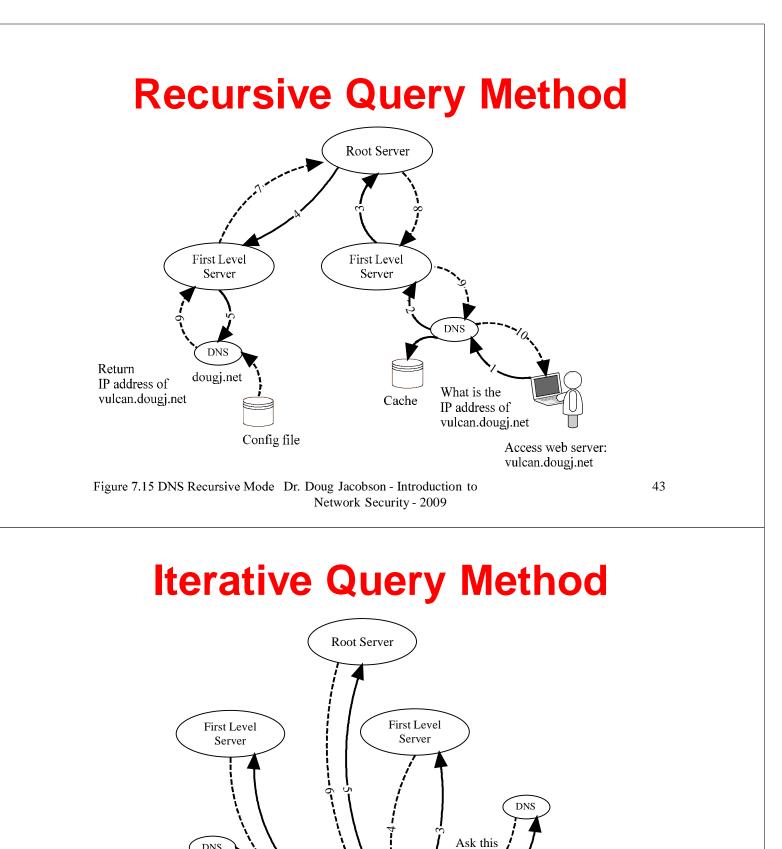
Reverse Lookups

IP to Name conversion
Not all IP addresses will


resolve to a name

103.5.186.129.in-addr.arpa..

Dr. Doug Jacobson - Introduction to Netwbigu&ccubiDNS2009erse Name Hierarchy


DNS System

Device with DNS server

Figure 7.14 DNS System

Dr. Doug Jacobson - Introduction to Network Security - 2009

server

What is the IP address of vulcan.dougj.net

DNS

IP address of vulcan.dougj.net

dougj.net

Figure 7.16 DNS Iterative Mode

Access web server: Dr. Doug Jacobsoncaindrougicition to Network Security - 2009

Responses

- If the answer comes back from any DNS server that has the answer cached it is called unauthoritative
- To handle the stale cache issue there is a time to live for each response.

Dr. Doug Jacobson - Introduction to Network Security - 2009

DNS Uses Two Messages

- Query := two fields
 - header | question
- Response := five fields
 - header | question | answer | authoritative | additional

DNS Packet Format

ID	Flags		
Number of Questions	Number of Answers	Fixed	
Number of Authoritative Answers	Number of Additional Records	Header	
Que	Question Section		
Query Type	Query Class		

Query Packet

QROpcodeAATCRDRA000rCode

Flags

Dr. Doug Jacobson - Introduction to Network Security - 2009 47

DNS Packet Format

ID	Flags			
ID	1 lags	_		
Number of Questions	Number of Answers	Fixed		
Number of Authoritative Answers	Number of Additional Records	Header		
Question				
Query Type	Query Class	_ Section		
Answer(s)				
Authoritative Answer(s)				
Additional Records				

Response Packet

QR	Opcode	AA	TC	RD	RA	0	0	0	rCode

Flags

Dr. Doug Jacobson - Introduction to Network Security - 2009

DNS Message Header

Header = 12 bytes

-Id = 2 bytes

- Flags = 2 bytes (see next slide)
- # of questions = 2 bytes
- # of answers = 2 bytes (0 in query)
- # of authoritative answers = 2 bytes (0 in query)
- # of additional answers = 2 bytes (0 in query)

Dr. Doug Jacobson - Introduction to Network Security - 2009 49

Flags Field

- 1 bit Q/R 0=query, 1= response
- 4 bits opcode
 - -0 = standard
 - -1 = inverse
 - -2 = server status request
- 1 bit AA 1 = Authoritative answer
- 1 bit TC 1 = answer > 512 bytes
- 1 bit RA 1 = recursion available
- 3 bits of zero
- 4 bits response code (see next slide)

Response codes

- 0 No Error
- 1 format error
- 2 problem at name server
- 3 domain reference problem
- 4 query type not supported
- 5 administratively prohibited

Dr. Doug Jacobson - Introduction to Network Security - 2009

DNS Question section

- Variable length Query name
- 16 bits query type
- 16 bits query class

DNS Query Name

- 6vulcan2ee7iastate3edu0
- Numbers are the count fields, they are in binary
- The count fields are only 6 bits to tell the difference between a count value and a offset pointer used for compression

Dr. Doug Jacobson - Introduction to Network Security - 2009

DNS Types

- 1- A Address
- 2 NS Name server
- 5 CNAME Alias
- 6 SOA Start of Authority
- 11 WKS Well known services
- 12 PTR IP to name conversion
- 13 HINFO Host info
- 15 MX Mail exchange
- 28 AAAA IPV6 address
- 252 AXFR Request a zones transfer
- 255 ANY Request all records

DNS Resource Record

- Domain name Variable length (pointer to the name in the query section
- Domain type (16 bits) same as query
- Domain class (16 bits) same as query
- Time to Live (32 bits) number of seconds, 0 = don't cache
- Resource data length (16 bits)
- Resource data (variable length)

Dr. Doug Jacobson - Introduction to Network Security - 2009

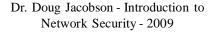
Resource data

- Number (4 bytes V4)
- Domain name (variable length)
- Offset pointer (upper two bits of first byte = 11
- Char string 1 byte length followed by characters

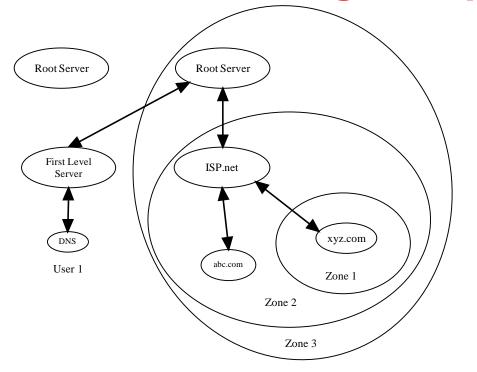
Compression

- 11 [address of the beginning byte]
- 12 is the first byte of the question section

Dr. Doug Jacobson - Introduction to Network Security - 2009


Header & Protocol attacks

- Header
 - Not many attacks, bad headers are rejected.
 - Can be used to leak data through a firewall
- Protocol
 - Simple protocol
 - Can use the DNS port number to communicate through a firewall


Dr. Doug Jacobson - Introduction to Network Security - 2009 58

Authentication

- Bad DNS Entries
 - Break in DNS server
 - Rouge DNS server
 - DNS cache poisoning
 - Bogus DNS replies
- Scope of Damage

DNS attack damage scope

Dr. Doug Jacobson - Introduction to Figure 7.18 DNS Attack Damage Scope Network Security - 2009

Traffic

- DNS server flooding can cause delayed to dropped responses. DNS client will try 4 times so they often will get an answer
- Sniffing is not a problem

Dr. Doug Jacobson - Introduction to Network Security - 2009

DNS

 DNSSEC is a new protocol and server that offers authenticated DNS with certificates.

- Not widely adopted

 DNS is a major weak point in the Internet. Taking down the DNS system can take down the entire Internet.

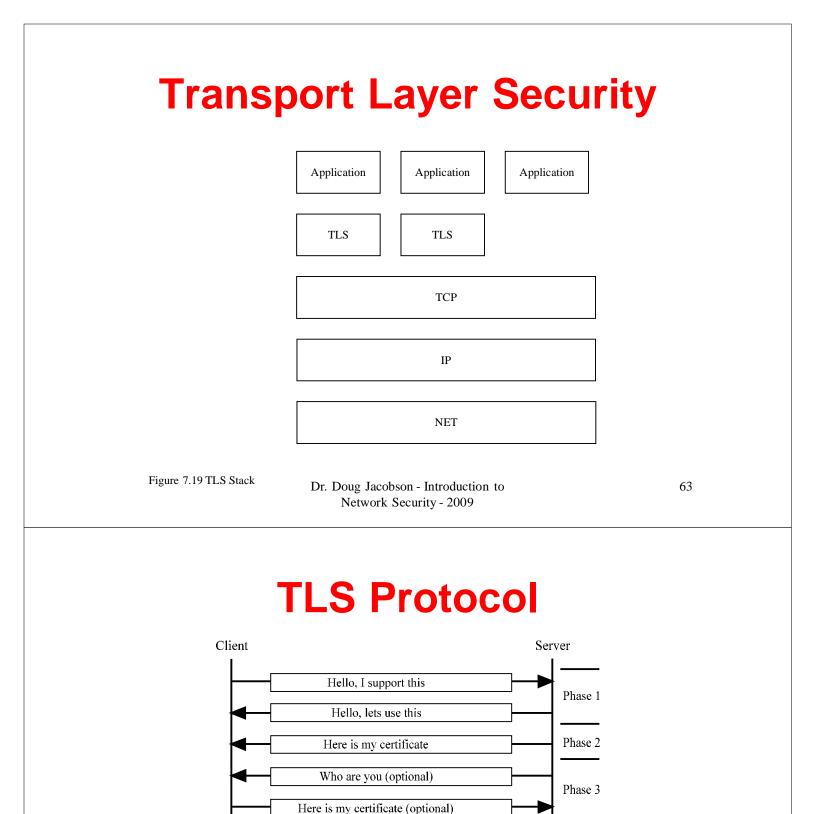


Figure 7.20 TLS Protocol Dr. Doug Jacobson - Introduction to Network Security - 2009

exchange the key

Encrypted Application Data

Phase 4